Introduction to Computational Thinking and Data Science
About this course
6.00.2x will teach you how to use computation to accomplish a variety of goals and provides you with a brief introduction to a variety of topics in computational problem solving . This course is aimed at students with some prior programming experience in Python and a rudimentary knowledge of computational complexity. You will spend a considerable amount of time writing programs to implement the concepts covered in the course. For example, you will write a program that will simulate a robot vacuum cleaning a room or will model the population dynamics of viruses replicating and drug treatments in a patient’s body.
Topics covered include:
- Advanced programming in Python 3
- Knapsack problem, Graphs and graph optimization
- Dynamic programming
- Plotting with the pylab package
- Random walks
- Probability, Distributions
- Monte Carlo simulations
- Curve fitting
- Statistical fallacies
What you’ll learn
- Plotting with the pylab package
- Stochastic programming and statistical thinking
- Monte Carlo simulations